Faculty
Subpages of the navigation point Faculty
Expand all entries
Refereed publications
Computationally Hard Problems Are Hard for QBF Proof Systems Too.External link Agnes Schleitzer, Olaf BeyersdorffAAAI 2025: 11336-11344
QCDCL with cube learning or pure literal elimination - What is best?External link Benjamin Böhm, Tomás Peitl, Olaf BeyersdorffArtif. Intell. 336: 104194 (2024). Preliminary version at IJCAI 2022: 1781-1787.
QCDCL vs QBF Resolution: Further Insights.External link Benjamin Böhm, Olaf BeyersdorffJ. Artif. Intell. Res. 81: 741-769 (2024). Preliminary version at SAT 2023: 4:1-4:17
Should Decisions in QCDCL Follow Prefix Order?External link Benjamin Böhm, Tomás Peitl, Olaf BeyersdorffJ. Autom. Reason. 68(1): 5 (2024). Preliminary version at SAT 2022: 11:1-11:19
The Riis Complexity Gap for QBF Resolution.External link Olaf Beyersdorff, Judith Clymo, Stefan S. Dantchev, Barnaby MartinJ. Satisf. Boolean Model. Comput. 15(1): 9-25 (2024)
Proof Complexity of Propositional Model Counting.External link Olaf Beyersdorff, Tim Hoffmann, Luc Nicolas SpachmannJ. Satisf. Boolean Model. Comput. 15(1): 27-59 (2024). Preliminary version at SAT 2023: 2:1-2:18
Hard QBFs for Merge Resolution. Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomás Peitl, Gaurav SoodACM Trans. Comput. Theory 16(2): 6:1-6:24 (2024). Preliminary version at FSTTCS 2020: 12:1-12:15
Strong (D)QBF Dependency Schemes via Implication-free Resolution Paths. Olaf Beyersdorff, Joshua Lewis Blinkhorn, Tomás PeitlACM Trans. Comput. Theory 16(4): 22:1-22:25 (2024). Preliminary version at SAT 2020: 394-411
Runtime vs. Extracted Proof Size: An Exponential Gap for CDCL on QBFs.External link Olaf Beyersdorff, Benjamin Böhm, Meena MahajanAAAI 2024: 7943-7951
Polynomial Calculus for Quantified Boolean Logic: Lower Bounds Through Circuits and Degree.External link Olaf Beyersdorff, Tim Hoffmann, Kaspar Kasche, Luc Nicolas SpachmannMFCS 2024: 27:1-27:15
The Relative Strength of #SAT Proof Systems.External link Olaf Beyersdorff, Johannes Klaus Fichte, Markus Hecher, Tim Hoffmann, Kaspar KascheSAT 2024: 5:1-5:19
Classes of Hard Formulas for QBF Resolution.External link Agnes Schleitzer, Olaf BeyersdorffJ. Artif. Intell. Res. 77: 1455-1487 (2023). Preliminary version at SAT 2022: 5:1-5:18
Lower Bounds for QCDCL via Formula Gauge.External link Benjamin Böhm, Olaf BeyersdorffJ. Autom. Reason. 67(4): 35 (2023). Preliminary version at SAT 2021: 47-63
Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution.External link Olaf Beyersdorff, Benjamin BöhmLog. Methods Comput. Sci. 19(2) (2023). Preliminary version at ITCS 2021: 12:1-12:20
Hardness Characterisations and Size-width Lower Bounds for QBF Resolution. Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomás PeitlACM Trans. Comput. Log. 24(2): 10:1-10:30 (2023). Preliminary version at LICS 2020: 209-223
Proof complexity of modal resolution.External link Sarah Sigley, Olaf BeyersdorffJ. Autom. Reason. 66(1): 1–41 (2022) .
A simple proof of QBF hardnesspdf, 244 kb · de Olaf Beyersdorff, Joshua BlinkhornInf. Process. Lett. 168: 106093 (2021).
QBFFam: A Tool for Generating QBF Families from Proof Complexitypdf, 276 kb · de . Olaf Beyersdorff, Luca Pulina, Martina Seidl, Ankit ShuklaSAT 2021: 21-29
Building Strategies into QBF Proofs.External link Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan J. Autom. Reason. 65(1): 125-154 (2021). Preliminary version at STACS 2019: 14:1-14:18
Hard QBFs for Merge ResolutionExternal link Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomáš Peitl and Gaurav SoodFSTTCS 2020, pages 12:1–12:15
Frege Systems for Quantified Boolean Logicpdf, 541 kb · de Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, Ján PichJournal of the ACM April 2020 Article No.: 9
Lower Bound Techniques for QBF ExpansionExternal link Olaf Beyersdorff, Joshua BlinkhornTheory Comput. Syst. 64(3): 400-421 (2020)
Dynamic QBF Dependencies in Reduction and ExpansionExternal link Olaf Beyersdorff, Joshua BlinkhornACM Trans. Comput. Log. 21(2): 8:1-8:27 (2020)
Reasons for Hardness in QBF Proof SystemsExternal link Olaf Beyersdorff, Luke Hinde, Ján PichTOCT 12(2): 10:1-10:27 (2020)
Hardness Characterisations and Size-Width Lower Bounds for QBF Resolutionpdf, 713 kb · de Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan LICS 2020: 209-223
Olaf Beyersdorff, Joshua Blinkhorn, Tomás PeitlExternal link Strong (D)QBF Dependency Schemes via Tautology-Free Resolution Paths.SAT 2020: 394-411
Characterising tree-like Frege proofs for QBFpdf, 309 kb · de Olaf Beyersdorff, Luke HindeInf. Comput. 268 (2019)
Reinterpreting Dependency Schemes: Soundness Meets Incompleteness in DQBFExternal link Olaf Beyersdorff, Joshua Blinkhorn, Leroy Chew, Renate A. Schmidt, Martin SudaAutom. Reasoning 63(3): 597-623 (2019)
A Game Characterisation of Tree-like Q-resolution SizeExternal link Olaf Beyersdorff, Leroy Chew, Karteek SreenivasaiahJ. Comput. Syst. Sci. 104: 82-101 (2019)
Size, Cost, and Capacity: A Semantic Technique for Hard Random QBFsExternal link Olaf Beyersdorff, Joshua Blinkhorn, Luke HindeLogical Methods in Computer Science 15(1) (2019)
Short Proofs in QBF Expansionpdf, 368 kb · de Olaf Beyersdorff, Leroy Chew, Judith Clymo, Meena MahajanSAT 2019 : 19-35
Proof Complexity of QBF Symmetry Recomputationpdf, 277 kb · de Joshua Blinkhorn, Olaf BeyersdorffSAT 2019: 36-52
Understanding cutting planes for QBFsExternal link Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil ShuklaInf. Comput. , 262: 141-161, 2018.
Genuine Lower Bounds for QBF ExpansionExternal link Olaf Beyersdorff, Joshua BlinkhornSTACS, pages 12:1-15, 2018.
Relating Size and Width in Variants of Q-Resolutionpdf, 207 kb · de Judith Clymo, Olaf BeyersdorffInf. Process. Lett. (IPL), 138:1-6, 2018.
Size, Cost, and Capacity: A Semantic Technique for Hard Random QBFsExternal link Olaf Beyersdorff, Joshua Blinkhorn, Luke HindeITCS 2018, pages 9:1-18
Reasons for Hardness in QBF Proof SystemsExternal link Olaf Beyersdorff, Luke Hinde, Ján Pich FSTTCS, pages 14:1-15, 2017 .
Shortening QBF Proofs with Dependency Schemespdf, 316 kb · de Joshua Blinkhorn, Olaf Beyersdorff SAT, pages 263-280, 2017 . Best paper award.
Feasible Interpolation for QBF Resolution CalculiExternal link Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil ShuklaLogical Methods in Computer Science , 13(2), 2017.
Understanding Cutting Planes for QBFspdf, 628 kb · de Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil ShuklaFSTTCS, pages 40:1-15, 2016.
Understanding Gentzen and Frege Systems for QBFExternal link Olaf Beyersdorff, Jan PichLICSExternal link , pages 146-155, 2016.
Dependency Schemes in QBF Calculi: Semantics and SoundnessExternal link Olaf Beyersdorff, Joshua BlinkhornCP, pages 96-112, 2016.
Lifting QBF Resolution Calculi to DQBFpdf, 303 kb · de Olaf Beyersdorff, Leroy Chew, Renate A. Schmidt, Martin SudaSAT, pages 490-499, 2016.
Are Short Proofs Narrow? QBF Resolution is not Simplepdf, 444 kb · de Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil ShuklaSTACS , pages 15:1-14, 2016.
Lower bounds: from circuits to QBF proof systemsExternal link Olaf Beyersdorff, Ilario Bonacina, Leroy ChewITCSExternal link , pages 249-260, ACM, 2016.
Extension Variables in QBF Resolutionpdf, 214 kb · de Olaf Beyersdorff, Leroy Chew, Mikolás JanotaAAAI-16 workshop on Beyond NP , 2016.
Feasible Interpolation for QBF Resolution CalculiExternal link Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil ShuklaICALP , pages 180-192, 2015.
Proof Complexity of Resolution-based QBF CalculiExternal link Olaf Beyersdorff, Leroy Chew, Mikolás JanotaSTACS , pages 76-89, 2015.
A Game Characterisation of Tree-like Q-resolution SizeExternal link Olaf Beyersdorff, Leroy Chew, Karteek SreenivasaiahLATA , pages 486-498, 2015.
On Unification of QBF Resolution-Based CalculiExternal link Olaf Beyersdorff, Leroy Chew, Mikolás JanotaMFCS , pages 81-93, 2014.
Unified Characterisations of Resolution Hardness MeasuresExternal link Olaf Beyersdorff, Oliver KullmannSAT , pages 170-187, 2014.
Tableau vs. Sequent Calculi for Minimal EntailmentExternal link Olaf Beyersdorff, Leroy ChewNMR , 2014.
The Complexity of Theorem Proving in Circumscription and Minimal EntailmentExternal link Olaf Beyersdorff, Leroy ChewIJCAR , pages 403-417, 2014.
The Complexity of Theorem Proving in Autoepistemic LogicExternal link Olaf BeyersdorffSAT , pages 365-376, 2013.
Parameterized Complexity of DPLL Search ProceduresExternal link Olaf Beyersdorff, Nicola Galesi, Massimo Lauria ACM Trans. Comput. Log. (TOCL) , 14(3):20, 2013. A preliminary version appeared inSAT , pages 5-18, 2011. (nominated for the best paper award)
A characterization of tree-like Resolution sizeExternal link Olaf Beyersdorff, Nicola Galesi, Massimo Lauria Inf. Process. Lett. (IPL) , 113(18):666-671, 2013.
Verifying proofs in constant depthExternal link Olaf Beyersdorff, Samir Datta, Andreas Krebs, Meena Mahajan, Gido Scharfenberger-Fabian, Karteek Sreenivasaiah, Michael Thomas, Heribert Vollmer ACM Transactions on Computation Theory (TOCT) , 5(1):2, 2013. A preliminary version appeared inMFCS , pages 630-641, 2011.
The complexity of reasoning for fragments of default logicExternal link Olaf Beyersdorff, Arne Meier, Michael Thomas, Heribert VollmerJ. Log. Comput. , 22(3):587-604, 2012. A preliminary version appeared inSAT , pages 51-64, 2009.
Parameterized Bounded-Depth Frege Is not OptimalExternal link Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, Alexander A. RazborovACM Transactions on Computation Theory (TOCT) , 4(3):7, 2012.Notable papersExternal link A preliminary version appeared inICALP , pages 630-641, 2011.
Proof complexity of propositional default logicExternal link Olaf Beyersdorff, Arne Meier, Sebastian Müller, Michael Thomas, Heribert VollmerArch. Math. Log. , 50(7-8):727-742, 2011. A preliminary version appeared inSAT , pages 30-43, 2010.
Proof systems that take adviceExternal link Olaf Beyersdorff, Johannes Köbler, Sebastian Müller Inf. Comput. , 209(3):320-332, 2011. Combined journal version of the conference papers Olaf Beyersdorff, Sebastian Müller Does Advice Help to Prove Propositional Tautologies?SAT , pages 65-72, 2009. Olaf Beyersdorff, Johannes Köbler, Sebastian Müller Nondeterministic Instance Complexity and Proof Systems with AdviceLATA , pages 164-175, 2009.
Model Checking CTL is Almost Always Inherently SequentialExternal link Olaf Beyersdorff, Arne Meier, Martin Mundhenk, Thomas Schneider, Michael Thomas, Heribert VollmerLogical Methods in Computer Science , 7(2), 2011. A preliminary version appeared inTIME , pages 21-28, 2009.
Do there exist complete sets for promise classes?pdf, 370 kb · de Olaf Beyersdorff, Zenon SadowskiMath. Log. Q. (MLQ) , 57(6):535-550, 2011. Combined journal version of the conference papers Olaf Beyersdorff, Zenon Sadowski Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise ClassesCSR , pages 47-58, 2009. Olaf Beyersdorff On the Existence of Complete Disjoint NP-PairsSYNASC , pages 282-289, 2009.
A tight Karp-Lipton collapse result in bounded arithmeticpdf, 291 kb · de Olaf Beyersdorff, Sebastian Müller ACM Trans. Comput. Log. (TOCL) , 11(4), 2010. A preliminary version appeared inCSL , pages 199-214, 2008.
A lower bound for the pigeonhole principle in tree-like Resolution by asymmetric Prover-Delayer gamesExternal link Olaf Beyersdorff, Nicola Galesi, Massimo LauriaInf. Process. Lett. (IPL) , 110(23):1074-1077, 2010.
The Deduction Theorem for Strong Propositional Proof SystemsExternal link Olaf Beyersdorff Theory Comput. Syst. , 47(1):162-178, 2010. A preliminary version appeared inFSTTCS , pages 241-252, 2007.
Comparing axiomatizations of free pseudospacesExternal link Olaf Beyersdorff Arch. Math. Log. (AML) , 48(7):625-641, 2009.
Edges as Nodes - a New Approach to Timetable InformationExternal link Olaf Beyersdorff, Yevgen NebesovATMOS , 2009.
The complexity of propositional implicationExternal link Olaf Beyersdorff, Arne Meier, Michael Thomas, Heribert VollmerInf. Process. Lett. (IPL) , 109(18):1071-1077, 2009.
On the correspondence between arithmetic theories and propositional proof systems - a surveyExternal link Olaf Beyersdorff Math. Log. Q. (MLQ) , 55(2):116-137, 2009. A preliminary version appeared as Logical Closure Properties of Propositional Proof SystemsTAMC , pages 318-329, 2008.
Nondeterministic functions and the existence of optimal proof systemsExternal link Olaf Beyersdorff, Johannes Köbler, Jochen Messner Theor. Comput. Sci. (TCS) , 410(38-40):3839-3855, 2009.
Tuples of Disjoint NP-SetsExternal link Olaf BeyersdorffTheory Comput. Syst. , 43(2):118-135, 2008. A preliminary version appeared inCSR , pages 80-91, 2006.
Classes of representable disjoint NP-pairsExternal link Olaf BeyersdorffTheor. Comput. Sci. (TCS) , 377(1-3):93-109, 2007. Combined journal version of the conference papers Disjoint NP-Pairs from Propositional Proof SystemsTAMC , pages 236-247, 2006. Representable Disjoint NP-PairsFSTTCS , pages 122-134, 2004.
Invited papers
Books edited
42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)External link Olaf Beyersdorff, Michal Pilipczuk, Elaine Pimentel, Kim Thang Nguyen (editors), STACS 2025, March 4-7, 2025, Jena, Germany. LIPIcs 327, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2025
41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)External link Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, Daniel Lokshtanov (editors), STACS 2024, March 12-14, 2024, Clermont-Ferrand, France. LIPIcs 289, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2024
Mathematics for Computation (M4C) Marco Benini, Olaf Beyersdorff, Michael Rathjen, Peter Michael Schuster (editors), World Scientific Publishing Company Pte. Limited, 2023
Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International ConferenceExternal link Olaf Beyersdorff, Christoph M. Wintersteiger (editors), SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings. Lecture Notes in Computer Science 10929, Springer 2018
Book chapters and books
Quantified Boolean formulaspdf, 638 kb · de Olaf Beyersdorff, Mikolas Janota, Florian Lonsing, and Martina Seidl In A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds., Handbook of Satisfiability, 2nd edition, Frontiers in Artificial Intelligence and Applications. IOS press, 2021.
Non-classical Aspects in Proof Complexitypdf, 784 kb · de Olaf Beyersdorff Habilitation Thesis, Leibniz University Hanover, 2011 Cuvillier Verlag, 2012.
Proof Complexity of Non-classical LogicsExternal link Olaf Beyersdorff, Oliver KutzLectures on Logic and Computation - ESSLLI 2010 Copenhagen, Denmark, August 2010, ESSLLI 2011, Ljubljana, Slovenia, August 2011, Selected Lecture Notes , pages 1-54, Springer, 2012.
Von der Turingmaschine zum Quantencomputer - ein Gang durch die Geschichte der Komplexitätstheoriepdf, 848 kb · de Olaf Beyersdorff, Johannes Köbler In W. Reisig and J.-C. Freytag, eds., Informatik - Aktuelle Themen im historischen Kontext , pages 165-195, Springer, 2006.
Disjoint NP-pairs and propositional proof systemsExternal link Olaf Beyersdorff Dissertation, Humboldt University Berlin, 2006.